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The scaling behavior of the closed trajectories of a moving particle generated by 
randomly placed rotators or mirrors on a square or triangular lattice is studied 
numerically. On both lattices, for most concentrations of the scatterers the tra- 
jectories close exponentially fast. For special critical concentrations infinitely 
extended trajectories can occur which exhibit a scaling behavior similar to that 
of the perimeters of percolation clusters. At criticality, in addition to the two 
critical exponents r =  15/7 and df=7/4 found before, the critical exponent 
a = 3/7 appears. This exponent determines structural scaling properties of closed 
trajectories of finite size when they approach infinity. New scaling behavior was 
found for the square lattice partially occupied by rotators, indicating a different 
universality class than that of percolation clusters. Near criticality, in the critical 
region, two scaling functions were determined numerically: f (x) ,  related to the 
trajectory length (S) distribution ns, and h(x), related to the trajectory size Rs 
(gyration radius) distribution, respectively. The scaling function f ( x )  is in most 
cases found to be a symmetric double Gaussian with the same characteristic 
size exponent a = 0.43 ~ 3/7 as at criticality, leading to a stretched exponential 
dependence of ns on S, n s ~ e x p ( -  $6/7). However, for the rotator model on the 
partially occupied square lattice an alternative scaling function is found, leading 
to a new exponent a ' =  1.6 +_ 0.3 and a superexponential dependence of n s on S. 
h(x) is essentially a constant, which depends on the type of lattice and the con- 
centration of the scatterers. The appearance of the same exponent a = 3/7 at and 
near a critical point is discussed. 

KEY W O R D S :  Lattice; particle trajectories; percolation; scaling function; 
criticality. 

1. I N T R O D U C T I O N  

In a number of previous publications ~ - ~  the diffusion properties of 
Lorentz lattice gas cellular automata has been studied. There the behavior 
of a point particle moving through fixed, regularly ~6) or randomly ~ t-5, 7-11j 
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placed scatterers on the lattice sites of a variety of planar lattices has been 
obtained numrically. The scatterers consisted either of rotating right and 
left rotators or of reflecting right and left mirrors which scatter the particle 
either to its right or its left, respectively. The particle is constrained to 
move in unit time steps along the lattice bonds (of unit length) and the 
lattices studied were the square, ~1"2"4"71 triangular ~3.7~ honeycomb,CSI quasi- 
lattice, ~8~ and random latticeJ 3'1~ Since the scatterers are fixed on the 
lattice, the particle simply travels periodically on the lattice once the trajec- 
tory forms a closed orbit. In almost all cases studied so far the trajectories 
close exponentially fast, typically after 2 io time steps. However, in some cases 
they close power-law slowly. In that case there are extended trajectories, 
possibly of infinite length, which only close after a long (possibly infinite) 
time. Studying these extended trajectories reveals that they exhibit scaling 
properties, which in the case of a lattice fully occupied by scatterers, can be 
mapped onto a corresponding bond or site percolation problem. However, 
in the case of a lattice not fully occupied by scatterers, where empty sites 
occur and the particle trajectory can cross itself, no such mapping seems 
possible. Nevertheless some of the scaling properties of these trajectories 
are then still the same as those found for the fully occupied lattice where 
no such crossing can occur. The identity of the scaling properties of the 
closed trajectories with those of a corresponding percolation problem is 
exemplified, for example, by the appearance of the same two universal criti- 
cal exponents that occur in the two-dimensional (bond or site) percolation 
problem: a fractal dimension df  = 7/4 associated with the length S of the 
trajectories (perimeter of a percolation cluster) and the mean square dis- 
tance of all points on a large trajectory of length S from the origin, R~. 
(gyration radius squared of a percolation cluster), 

R~, ~ S z'd' ( 1 ) 

as well as the Fisher exponent v = 15/7 characterizing the probability dis- 
tribution of closed trajectories (percolation clusters) o f a  certain length, 

n s ~ S  -~+l  (2) 

A hyperscaling relation holds between these exponents: 

2 
r - 1  = - -  (3) 

We note that the closed particle trajectories, when mapped onto per- 
colation clusters, are characterized here by their "surface" properties, i.e., 
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their length, not, as is usually done, by their "bulk" properties, i.e., the 
total number of lattice sites they contain. 

In this paper we introduce finer characterizations of the closed particle 
trajectories than by the scaling exponents z and d s alone. The quantities 
that describe the finer characterizations are: (1) The number of right and 
left scatterers and empty sites on a closed trajectory, i.e., NR, NL, and NE, 
respectively; (2) the winding angle W, i.e., the number of right turns minus 
the number of left turns of the particle moving on a closed trajectory; and 
(3) the frequency with which lattice sites on the particle trajectory are 
visited by the moving particle. These are more detailed "structural" proper- 
ties than the "gross" properties incorporated in r and dr. By studying these 
properties for finite trajectories of increasing length at criticality, we derive 
in this paper a number of trajectory scaling properties which include not 
only the asymptotic behavior for infinitely large closed trajectories, but also 
the approach to the asymptotic behavior. This approach is characterized 
by a critical size exponent a, which also describes that of the percolation 
cluster perimeters at the percolation thresholdJ ~2~3~ In addition, the 
scaling behavior in the region near criticality, i.e., when one approaches the 
critical point from the outside, is obtained by the determination of two 
scaling functions, to be defined below, which also contain the critical size 
exponent a. 

The numerical algorithm we used was obtained from an efficient com- 
bination of the Ziff algorithm I ~3. ~4~ (use of a virtual lattice) and a technique 
recently developed by Wang and Cohen ~7"8~ (dynamical memory alloca- 
tion). The simulation was done on a virtual lattice of size 65536 x 65536. 
The lattice was divided into 1024 x 1024 blocks of 64 x 64 sites rather than 
256x256  blocks of 256x256  sites as used by ZiW TM and Wang and 
Cohen, ~7"81 since a smaller block size is more efficient for dilute scatterer 
models. Sixteen bits (216= 65536) were used to determine the (x, y) coor- 
dinates of a site; the upper ten bits (2 ~~ = 1024) were used for the location 
of the block which had been visited by the moving particle, while the lower 
six bits (2 6= 64) were used for the site position within the block. Another 
array of 1024 x 1024 was introduced to record whether a block had been 
visited by the particle. The application of bit shifting, masking, etc., to look 
up the coordinates of blocks and sites contained in the blocks made the 
whole process very fast. Furthermore, the use of a dynamic memory alloca- 
tion technique, where an array of pointers is generated so that each block 
has a corresponding pointer, allows actual memory of the states of the sites 
(i.e., the type of scatterer placed on the site) in the block to be assigned to 
its pointer only when the particle enters it (using MALLOC in C). After a 
trajectory is finished, only memories that had been assigned to the pointers 
are deleted (using FREE in C). 
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About 300,000 independent particles, initially placed randomly on the 
lattice, were studied. We only collect closed particle trajectories whose 
lengths are smaller than a certain limit. The trajectory is disregarded if it 
did not close by that number of steps. The value of the limit we used was 
up to 22~-224 time steps, depending on the concentration of the scatterers. 
In all the simulations there was no particle that crossed the boundary of 
the virtual lattice. 

We have verified for the fully occupied square and triangular lattices 
that our calculations were made for systems of a sufficiently large number 
of particles and for sufficiently long times that the error bars in our figures 
are typically of the order of the size of the symbols. However, for the par- 
tially occupied square and triangular lattices the accuracy of our calcula- 
tions decreases with the concentration of scatterers. 

In order to condense the multitude of computer results we obtained, 
we will present the results for the rotator model on the square lattice in 
some detail. The results for the mirror model on the square lattice and for 
both models on the triangular lattice will be discussed more summarily and 
all results are collected in Tables I-IV. For  more details we refer to ref. 15. 

The organization of this paper is as follows. Section 2 deals with the 
behavior of the rotator model on the square lattice and discusses the closed 
trajectory scaling results both for a fully and a partially occupied lattice at 
criticality. In Section 3 the corresponding results for the mirror model are 
briefly summarized. In Sections 4 and 5 the critical region for the rotator 
and mirror models on the square lattice are discussed, respectively. In 
Sections 6 and 7 we discuss the closed trajectory scaling results for the tri- 
angular lattice at and near criticality, respectively, which are the same for 
both the rotator and the mirror model. Section 8 contains a summary of 
our results in four tables as well as a number of open questions. 

2. CRITICAL BEHAVIOR OF THE ROTATOR MODEL ON THE 
SQUARE LATTICE 

2.1. The Fully Occupied Lattice 

In the rotator model right and left rotators are randomly placed on 
the sites of the lattice. A particle moves along the bonds of the lattice and 
its velocity is rotated either to its right or to its left by n/2 upon being scat- 
tered by a right or a left rotator, respectively. The total concentration, i.e., 
the fraction of the lattice occupied by scatterers C, is the sum of those of 
the right rotators C n and the left rotators Cz., respectively: C = Cn + CL. 

For the fully occupied lattice, i.e., C =  1, the trajectories of the moving 
particle can be mapped onto the perimeters of bond percolation 
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c l u s t e r s ,  (4'7'9) a s  was first noted by G r a s s b e r g e r .  (16) Since the critical con- 
centration for bond percolation on the square lattice is I/2, the critical con- 
centration for the rotator model is also 1/2, i.e., CR,. = CL~ = 1/2. We note 
that the right rotators are either on the outer side of the trajectories, in 
which case the trajectory is traversed clockwise, or on the inner side of the 
trajectories, in which case the trajectory is traversed counterclockwise 
(Fig. la). It is convenient in our numerical simulations to introduce for the 
analysis of the trajectories the winding angle W, which, for example, allows 
a determination of whether a closed trajectory is traversed clockwise or 

(a) 
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Fig. I. (a) A typical counterclockwise closed trajectory on the square lattice. Note that all 
left rotators and all right rotators are on the outer side and inner side of the trajectory, respec- 
tively. Here W =  - 2 n ,  N n = 5 ,  Nt .=  10, Nt = 14, N2 = 1, N =  15, and S =  16. (b) The same 
trajectory generated by mirrors on the square lattice. Mirrors (thick solid lines) on the outer 
side of the trajectory form a bond percolation cluster perimeter on one of the two sublattices 
(dashed lines), while mirrors on the inner side of the trajectory form a bond percolation 
cluster perimeter on the other sublattice (dotted lines). Here M R = 6 and M c = 9, 



152 Cao and Cohen 

counterclockwise. For a given trajectory, W is computed at each step by 
increasing it by re/2 if the particle is turned to the right and decreasing it 
by re/2 if the particle is turned to the left. Then, when the trajectory closes, 
the winding angle will either be 2n or -2re,  corresponding to clockwise or 
counterclockwise rotation, respectively. 

Although we expect that for large trajectories the number of right 
rotators N R and the number of left rotators NL contained in the trajectories 
are on average the same, there are symmetric fluctuations of NR/N with 
respect to their mean value CR, = 1/2. The distribution of NR/N can be 
fitted to a double Gaussian (Fig. 2a). The symmetry is due to the fact that 
the same trajectory can be generated by replacing all right (left) rotators 
with left (right) rotators, respectively, and reversing the particle velocity. 
However, if we just look at the clockwise-traversed trajectories, the fluctua- 
tions of NR/N are no longer symmetric with respect to 1/2, since then the 
right rotators are always on the outer side of the trajectories, while the 
left rotators are always on the inner side of the trajectories. From our 
numerical results we found that (Fig. 3), 

( N t J N -  1/2) r  (No~N-  1 / 2 ) ~ N  ,,.57 (4) 

where N = NR + NI. is the total number of sites of the closed trajectory. The 
averages ( . . . ) ~  and ( . . . ) ~  are taken over all closed trajectories con- 
taining N sites in which the particle moves clockwise (Fig. 3) and counter- 
clockwise, respectively. There are two observations to make with regard 
to Eq. (4). First, the number of right and left rotators on a closed orbit 
become asymptotically equal, i.e., asymptotically, NR/N=Nz./N=I/2. 
Second, the critical exponent 0.57 is in good approximation equal to 1 - a ,  
where the critical cluster perimeter length exponent is cr = 3/7. 

It has been noticed before ~4'9~ that memory effects play a dominant 
role in the motion of the particle on the lattice with fixed scatterers and in 
the generation of its trajectory. However, no direct measurement of a 
memory effect has been given. In this paper we do so by examining how 
many sites on a trajectory are visited once NI (no memory effect) or twice 
N_, (memory effect). A site on the trajectory cannot be visited more than 
twice on the fully occupied square lattice, since for a particle to return to 
the same site it has to move an even number of steps. As at each step the 
winding angle changes by _+ rr/2, the change of the winding angle can only 
be either 2re or rt when the particle returns to the same site, so that only 
N~ and N 2 are allowed. Thus we have the sum rules 

N~ +N2 =N (5) 
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Fig. 2. The probability density P(NR/N)  vs. N R / N  foE" the rotator model on the fully 
occupied squ~tt:e lattice. The data were obtained from trajectories consisting of 1300-1500 
sites (<>) and 2000-2300 sites (+ ) .  (a) Both clockwise and counterclockwise trajectories 
are included in the data. The solid and the dashed curves are described by the double 
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Fig. 4. Scaling behavior of N t and N2 for trajectories on the square lattice fully occupied by 
rotators, CR= CL = I/2: log2(Ni/N-1/2) vs. log_, S ( ~  ). Also plotted is log2( I / 2 -  N2/N ) 
vs. log2 S ( + ), which has the same values. The slope of the lines through both sets of points 
is -0 .57.  
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and 

Ni + 2N2 = S (6) 

Our numerical results show that (Fig. 4) 

<N,/N-- 1/2> = < 1 / 2 -  N2/N) ~ N -~ (7) 

Note that N~/N approaches 1/2 from above, while N2/N approaches 1/2 
from below, i.e., for infinitely large trajectories N~/N and N2/N are equal. 
The asymptotic value 1/2 for N~/N and N2/N was noticed independently 
by ZiffJ ~71 Furthermore, the critical exponent again appears to be related 
to a. 

Besides the memory effect exhibited by N~ and N2, there are other 
interesting structural properties associated with N~ and N2. For each site 
belonging to Nt only two of four adjacent bonds belong to the trajectory, 
while for each site belonging to N2 all four adjacent bonds belong to the 
trajectory, i.e., the site is surrounded by the trajectory. In other words, the 
N~ form the "surface" of a trajectory, while the N2 form the "bulk" of 
the trajectory. From Eqs. (6) and (7) it follows that 

( S / N -  3/2) ~ N  -~ (8) 

indicating that S and N are asymptotically proportional to each other. 

2.2. The Partially Occupied Lattice 

For a partially occupied lattice the trajectories can cross themselves 
and the outer side and inner side of the closed orbits can no longer be well 
defined, so that a direct mapping of the trajectories onto the perimeters of 
bond percolation clusters is not possible. <7"~8~ Nevertheless earlier numeri- 
cal studies 17~ still showed the existence of two critical lines symmetric with 
respect to the line CR = CL and that the critical exponents r and df have 
the same values as at C = 1. Moreover, we now found that the critical lines 
appear to be tangent to the line C =  1 at CL,= C R =  1/2. However, the 
existence of these critical lines could not be established below C = 0.56, due 
to the prohibitively long numerical calculations needed. 

One important consequence of the inequality of CR and Cz. at criti- 
cality for C <  1 is that the winding angles appear to be asymptotically 
proportional to the number of sites contained in the closed trajectories. As 
an example, we considered the critical points at concentrations C=0.90, 
viz. CR = 0.477 and CL = 0.423; and C = 0.80, viz. CR = 0.44 and CL, = 0.36. 

822/87/I-2-12 
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We only discuss here the behavior for C =  0.90. Then the deviation of the 
winding angle from its mean value (CR, -  Co,) decays not with a power 
law, but with a stretched exponential law (Fig. 5), 

( I W ( N ) / N -  (CR-- Ct_)l > ~2  -2.8 N I'1~ (9) 

For NR/N, NL/N, and NE/N our numerical calculations yield the following 
scaling relation (Fig. 6): 

( I N R / N - -  CR[ ) ~ ( [ N L / N -  Cz.I ) ~ ( [ N E / N -  Cr.[ ) ~ N -''5~ (10) 

Here Nt.- is the number of empty sites on a trajectory and C/- the concen- 
tration of empty sites on the lattice (CR + Ct_+ C/.:= 1). Note that the 
value of the exponent -0 .50 differs from that for the fully occupied lattice 
-0.57, indicating that self-crossing occurs randomly as the particle 
generates its trajectory. 

The memory effects on the partially occupied lattice are more com- 
plicated than on the fully occupied lattice. For example, the number of 
times that a site can be visited by the moving particle can range from one 
to four. We denote the number of these different types of sites by N~, N_,, 
N3, and N 4, respectively. Since each site belongs to only one of the four 
types N~, N 2, N 3, or N4, we have the following two sum rules: 

Ni + N2 + N3 + N4= N 

N I + 2N 2 + 3N 3 + 4 N  4= S 

(11) 

(12) 

If the asymptotic values for Nt/N, N J N ,  N3/N, and N4/N are represented 
by K~, K_,, K3, and K4, respectively, our numerical simulations show the 
following power-law behavior (Fig. 7): 

( N , / N -  K, ) ~ ( N 2 / N -  K 2) ~ ( K  3 - N3/N ) 

( K4 -- N4 /N)  ~ N -~ (13) 

The sum of K~, K, ,  K3, and Kz is equal to one, as required by Eq. (11). 
We found that Kt,  K2, K3, and K4 are functions of the concentration C 
and all appear to converge, for decreasing C, to values near 1/4 (Fig. 8). 
The exponent -0 .39 in the above equation is significantly different from 
the corresponding one for the fully occupied lattice, -0.57, although r and 
d / a r e  still the same as found by Cohen and Wang. 17) The same scaling 
behavior is found at C=0.80, suggesting that this critical behavior is 
universal along the critical line. 
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From Eqs. (12) and (13) it follows that, 

( S / N -  2.3670) ~ N - ~  (14) 

Here the constant -2 .3670 for C =  0.8 is close to the apparent asymptotic 
value S/N=2.5 derived from Eqs. (12) and (13), assuming the K,. all 
approach 0.25 for C ~ 0. 

We note that the sites that belong to N2 can be separated into two 
classes: those that only have three adjacent bonds traversed by the particle 
and those that have four adjacent bonds traversed by the particle, respec- 
tively. The former together with Nt form the "surface" of the trajectories, 
while the latter together with N 3 and N 4 form the "bulk" of the trajectories. 

3. C R I T I C A L  B E H A V I O R  OF THE M I R R O R  M O D E L  ON THE 
S Q U A R E  LATTICE 

3.1. The  Fully Occup ied  Lat t ice  

In the mirror model the scatterers consist of right mirrors (tilted to the 
right by 7r/4) and left mirrors (tilted to the left by ~z/4), which reflect the 
particle upon collision like a photon is reflected from a mirror (Fig. lb). CR 
and CL are now the concentrations of right mirrors and left mirrors, 
respectively, and C - - C L +  CR. It has been shown ~4"7'~9~ that C =  l is a 
critical line for the mirror model. Only for CR, = CL, = 1/2 can the mirror 
model and the rotator model be mapped onto each other. That is, by 
properly replacing right mirrors and left mirrors by either left rotators or 
right rotators we can produce the same trajectory with the same probabil- 
ity. For  CRv ~ CL the trajectories of the two models can still be mapped 
onto each other, but the probability to generate the same trajectory by 
mirrors is no longer the same as by rotators, so that these two models can 
no longer be mapped onto each other. 

The mirror model can, for all C = I, still be mapped onto an isotropic 
bond percolation problem at criticality. Therefore the trajectory length dis- 
tribution, characterized by r =- 15/7, and the ffactal dimension d/= 7/4 are 
still the same as before. However, a can no longer be defined for the mirror 
model at C =  1, because we are on a critical line rather than at a critical 
point, as was the case for the rotator model. 

Unlike in the rotator model, in the mirror model right mirrors can 
either be on the outer side or on the inner side of a trajectory (Fig. lb). 
Therefore the method of separating trajectories into clockwise and counter- 
clockwise ones will not break the symmetry between the number of right 
mirrors MR and the number of left mirrors ML on the trajectories. Indeed, 
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our numerical results show that the distribution of MR/N (N = M R + ML) 
is a Gaussian centered at CR rather than a double Gaussian as we found 
in the rotator model (Fig. 2b). The following power-law describes how this 
distribution narrows as N increases: 

( I M R / N -  CRI ) = < I M L I N -  C,_l ) ~ N -~176 (15) 

The exponent 0.50 is due to the fact that C = 1 is a critical line: One cannot 
tell then at which concentration a large trajectory is generated, so that the 
number MR/N can fluctuate freely around its mean value CR. 

Memory effects can be studied in the same way as for the rotator  
model, because each site on the trajectories can only be visited either once 
or twice, the same as for the fully occupied rotator  model. Our  numerical 
results show that the scaling behavior of N~/N and N2/N is the same as 
that for the rotator  model, except that the asymptotic value now depends 
on the concentration CR, 

( N, I N -  a(CR) ) = ( b(CR) -- N2/N) ~ N -~ (16) 

From N~ + N 2 = N we have a(CR) + b(CR) = 1. For  CR > 1/2 our simulations 
show that a(CR) is monotonically decreasing with CR, while for CR < 1/2, 
a(CR) is monotonically increasing with CR (Fig. 9). At CR= C L =  1/2 we 
recover the result of the rotator  model, i.e., a(1/2) = b(1/2) = 1/2. 
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Fig. 9. Plots of a(C R) vs. C R (~1  and b(CR) vs. C R ( + )  for the mirror model on 
the fully occupied square lattice. The solid and the dashed lines are described by 
0.50 + 0.59(0.25 - CR CLI and 0.50 - 0.59(0.25 - CR Ct), respectively. 
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The scaling behavior for S / N  can be derived from the relation 
Nt +2N2 = S  and Eq. (16), 

< S / N -  [1 +b(CR)]>  ~ N  -~ (17) 

This scaling behavior is the same as that found for the fully occupied 
rotator model, Eq. (8), except that the asymptotic value is now a function 
of CR rather than a single value 3/2 as for the rotator model. 

3.2. The Part ial ly Occupied Latt ice 

Here we only give a very brief discussion of the mirror model on a 
partially occupied square lattice. Again, this model cannot be mapped onto 
a percolation model due to the fact that trajectories can cross themselves. 
Previous studies have shown that the distribution of the size of closed tra- 
jectories and the fractal dimension of large trajectories are drastically 
changed as soon as C <  1: r =  1 and d r = 2 ,  with logarithmic correc- 
tions, ~4"7"2~ indicating a first-order phase transition. It has also been 
shown by numerical simulations that the moving particle exhibits super- 
diffusive behavior, c7"2t ~ 

4. CRIT ICAL REGION OF THE R O T A T O R  M O D E L  ON THE 
S Q U A R E  LATTICE 

4.1. The Fully Occupied Latt ice 

In the critical region near criticality, i.e., for the critical behavior when 
the critical point is approached from the outside, in addition to the scaling 
exponents r, dr, and a, which already appeared in the previous section, one 
needs a scaling function, defined by ~21 

ns = S -z+ ' f [ ( C R  -- CR,) S"] (18) 

where n s is the probability to find a closed trajectory of length S and CR, 
the critical concentration of right rotators on the lattice. The scaling func- 
tion f ( x )  yields more detailed information about the trajectory length dis- 
tribution than the exponent a, where x = (CR -- CR,) S ~. Since there are no 
infinitely extended trajectories away from criticality, f ( x )  must vanish 
when x ~ oo. The exponent --z + 1 instead of the usual r occurs because 
the trajectories are constructed here from what corresponds in percolation 
theory to a seed and the number of choices to put the seed on a trajectory 
is proportional to the size of the trajectory itselfJ TM Note that since 
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x = (CR -- CR,.) S ", in order to make f ( x )  invariant, i.e., concentration inde- 
pendent, we need to give CR,. and ~ each a unique value. This provides an 
alternative method to compute both the critical exponent a and the critical 
concentration CR,. from numerical data obtained at a few different concen- 
trations in the critical region. 

In addition to f ( x )  we considered a scaling function h(x)  introduced 
by Stauffer and Aharony ~'-) 

R s  = S ~/'lr h[ ( C R -- C R, ) S ~] (19) 

where R s is the gyration radius of a closed trajectory of length S. The 
scaling function h(x)  characterizes corrections to the fractal dimension as 
one moves away from criticality. From our numerical simulations we 
found, however, that h(x)  is essentially a constant for all x. This implies 
that R s ~ S ~/'1~ holds quite accurately in practice even for small trajectories, 
i.e., away from criticality. 

Previous numerical determinations of the exponent a were based on 
the calculation of the first moment of the trajectory length distribu- 
tion ~ ,3, ~4. ts,=~ ( S ) ,  which is divergent at criticality, 

cc. 

( S ) =  S n s = ~ S - ~ + 2 f ( ( C R - C R , ) S  ~) 
s S 

~ (CR-- CR,.)-'3-rv~ (20) 

Since ( S ) ~ ( C R - - C R , )  -~' by definition, one has for the critical exponent 
) , = ( 3 - r ) / a - - = 2 .  In this paper we also compute the average of the mean 
square displacement of all trajectories (R2), which also diverges at 
criticality, 

( R 2) - R-sn s 
S 

= ~, S-Z+ l +2/arf((C R _ CR,) S ~) h2((CR - CRc) S ~) 
s 

~ (CR -- CR,.) -12 +'-/al- ~/~ (21) 

If we define a critical exponent p by ( R  2) ~ ( C R - C R , . )  -~', we have p =  
(2 + 2/d r -  r) /a  =7/3  =2.333. This hyperscaling relation is independent of 
the specific form o f f ( x )  and h(x). Note that the upper limit of the summa- 
tions in Eqs. (20) and (1) is infinity, which poses a difficulty when getting 
very close to the critical point, since the dominant closed trajectories are 
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then too large to generate on the computer. On the other hand, we can still 
compute the scaling functions f ( x )  and h(x) by making a large cutoff (2 -'4) 
in S, so that trajectories whose length is bigger than 224 are not considered. 
Although then the tail o f f ( x )  will be truncated by the cutoff, the remain- 
ing part still yields sufficient information to determine a. The calculation of 
each of the scaling functions f ( x )  or h(x) as well as that of ( S )  or (R- ' )  
at each concentration were carried out this way and involved 500,000 and 
30,000 particle trajectories, respectively. 

The scaling function f ( x )  can be computed directly from Eq. (18), 
using the known values of the exponents a and r and the critical concentra- 
tion CR,, 

f ( ( C R _ I ~ s ~ ) _  ns _$8/7n s (22) S-r+( \ \  z /  / 

Note that since ns is the probability to find a trajectory of length & the 
right-hand side of Eq. (22) is an average of S 8/7 taken over trajectories of 
length S and can be easily determined in our numerical simulations. Also, 
f ( x )  must be symmetric with respect to x = 0 ,  since the probability to 
generate the same trajectory is invariant under the transformation of inter- 
changing CR and CL. 

Our numerical calculations of the scaling function f ( x )  were carried 
out at CR = 0.47, 0.48, and 0.49, respectively. We found that the scaling 
functions obtained at these three concentrations collapse into a single 
curve, which could be fitted to a double Gaussian, i.e., a sum of two over- 
lapping Gaussians (Fig. 10), 

f ( x )  = 1.03e - 2.25(.,- + o.86)-' + 1.03e - 2.25(.,- - 0.8612 (23) 

Note that we determined 60 values o f f ( x )  for each Cn, so that the curve 
in Fig. 10 contains 180 points. When x,> 1, f ( x )  can be approximated by 

f ( x ) ~ e  -'-'-5''- (24) 

Therefore, ns exhibits a stretched exponential decay for large S: ns ~ e -s6p, 
in contrast to the exponential decay reported in the literature (~8''-2~ based 
on the solution of the percolation problem on the Bethe lattice. 

In order to calculate h(x), we first computed the product of h(x)f(x) .  
From Eqs. (18) and (19) we have 

Rs 
h(CR-  CR,) f (CR -- CR,.) =ns S~_ t+a/ (25) 
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Fig. 10. Tile scaling function fix) vs. x for the rotator model on a fully occupied square 
lattice computed at C = C R + 0 . 0 1  ( ~ ) ,  C = C R + 0 . 0 2  ( + ) ,  and C = C R + 0 . 0 3  (U]). 
The curve is described by a double Gaussian f ( x ) = l . 0 3  e x p [ - 2 . 2 5 1 x + 0 . 8 6 ) - ~ ] +  1.03 
exp[ - 2 . 2 5 ( x -  0.86)2]. The deviations between f(x) and the numerical data near x = 0 in this 
and later similar figures are due to the failure of scaring for small trajectories. 

The right-hand side of Eq. (25) is just the average of Rs/S ~-~+'~ for 
fixed S, which can be easily calculated numerically. Our numerical results 
show then that h(x)f(x) is proportional to f(x), Eq. (23) (Fig. 11), 

f(x) h(x) = 0.39e - 2.25(., + o.86)-" + 0.39e - 2.25~.,,- o.86)' (26) 

so that h(x) is essentially a constant, 0.37. 
We have also obtained the first moment of the trajectory length dis- 

tribution as a function of CR-CR,. Our numerical calculations show the 
power-law behavior 

<S)  = ( C R -  CR,)-~' (27) 

where 7=2.00+_0.01 (Fig. 12), in good agreement with the exact result 
7 =  ( 3 -  r ) / a = 2 .  Our numerical results for the mean square displacement 
of the trajectories also show a power-law behavior, 

(R-'> ~ (C R - CR,)-/' (28) 
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Fig. 13. 
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where p=2.33_+0.01 (Fig. 13), in good agreement with the exact result 
p = (2 + 21dy- r)/a = lla = 7/3 = 2.333. 

As a check, we also used a different method, the so-called histogram 
method, to calculate the scaling function f (x)  for different concentrations 
from data computed at a given initial concentration CR .~5~ A similar 
method has been used by Leath 123~ to study the scaling behavior of per- 
colation clusters and by Ferrenberg and Swendsen 124~ to study the critical 
behavior of the Ising model. The initial data that we used were computed 
at the concentration CR = 0.51. From these we generated the scaling func- 
tions f (x)  for CR = 0.52, 0.53, 0.54, 0.55, all of which fell on the same curve. 
Thus this method gives results consistent with those of the first one. These 
results also show that the critical region in concentration is at least as large 
as 0.05. 

4.2. The Partially Occupied Lattice 

For  C <  1 the particle trajectories can no longer be mapped onto a 
percolation problem, because the trajectories can cross themselves. We 
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Fig. 15. The scal ing function f ' ( x )  vs. x for the ro t a to r  model  on the par t ia l ly  occupied 

square  lat t ice c o m p u t e d  at  C = CR~ + 0.02 ( O ), C = CR, + 0.015 ( + ), and  C = CR, + 0.01 ( [3 ). 
The curve is descr ibed by an exponent ia l  function f ' ( x )  = 0.475 exp( - 0.165 x 10 - 8x). 
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found numerically that in addition to the exponent a occurring in the pre- 
vious section, they are also characterized by a different exponent or', 
suggesting a new scaling behavior. 

The simplest way to study the critical behavior near criticality for 
C < I  is to approach the critical point CR,=CL,=I/2  along the line 
CR = CL, which is perpendicular to the critical line at CR= CL = 1/2. 
Assuming that the cluster size distribution has a form similar to Eq. (18), 
we set (cf. Fig. 14): 

ns = S-~+t  f ' ( (1  - C) S ~') (29) 

where f ' ( x )  is a new scaling function, with x defined as ( 1 - C) S ~'. Since 
x cannot be negative, f ' ( x )  must be asymmetric with respect to x = 0, in 
contrast to f ( x )  of Eq. (23). The exponent r, however, must be the same 
as before, since for C =  1 the previously established relation n s ~ S  -~+j 
must be recovered. 

The computation of the new scaling function f ' ( x )  is much more time- 
consuming than that for the fully occupied lattice, but we can still compute 
it by making a cutoff, i.e., trajectories whose length are bigger than a fixed 
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Fig. 16. The scaling function f ' I x )  h'Lv) vs. x for the ro ta tor  model on the partially occupied 
square lattice computed at C = CR, + 0.02 ( �9 ), C = CR, + 0.015 ( + J, and C = CR, + 0.01 ( [] ). 
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number  are disregarded. In our simulations, we took this cutoff at 16 
million time steps. By choosing a '  = 1.6, we find that the scaling functions 
obtained for different concentrations C = 0.99, 0.985, 0.98 all collapse to a 
single curve (Fig. 15), 

f ' ( x )  = 0.475e -~ 1.65 • I0-8 .~ ,  ") (30) 

where for each C, 25 points have been computed, so that curve in Fig. 15 
contains 75 points. Note that since x ~ S  ~'6, f ' ( x )  decays as a super- 
exponential function of S, n s ~  e -s ' ' .  In fact, Eq. (30) obtains for values of 
a '  = 1.6 ___ 0.3. This large value of a '  as compared to a = 3/7 indicates that 
the typical size of closed trajectories upon approach to criticality increases 
much slower to infinity along the line CR= Cc than along the line 
CR + CL = 1. 

The other scaling function h'(x) is obtained from the calculation of 
f ' ( x )  h'(x), which we found again to be proportional  to f ' ( x )  (Fig. 16), 

f ' ( x )  h'(x) = 0.115e-I 1.65 • io-~,-~ (31) 

so that h'(x) = 0.115/0.475 = 0.24 independent o fx .  The exponents ),' and p '  
can be obtained from 7' = (3 - z)/a' = 0.54 and p '  = (2 + 2/d F - r)/a' = 0.63, 
respectively, and are both much smaller than those for C = 1. 

5. C R I T I C A L  R E G I O N  OF THE M I R R O R  M O D E L  O N  THE 
S Q U A R E  LATT ICE  

It has been shown by mapping the mirror model to a percolation 
problem that C = I  is a critical line, 14"7"17~ i.e., the length distribution 
and the fractal dimension of the trajectories have the same power-law 
behavior as for the corresponding percolation problem at criticality, 
n s ~ S  -~+ ~ S -8/7, so that r =  15/7 and d / = 7 / 4 ,  respectively. However, 
the average trajectory size ( S )  and the mean square displacement ( R  2) 
are both divergent along the critical line, so that the exponent a does not 
appear  here. 

For  C,~ 1 the mirror model can no longer be mapped onto a percola- 
tion problem. It was found numerically that the critical exponents are 
drastically changed from those at C = I ;  n s ~ ( l n S )  -~ and d r = 2  with 
logarithmic correctionsJ 4"7~ This new critical behavior exists in the whole 
(CR, CL) plane, where also superdiffusion occurs. 17"21~ Since ( S )  and 
( R  2) are both divergent everywhere, ~r cannot be defined either. 
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6. CRITICAL BEHAVIOR OF THE ROTATOR AND THE 
MIRROR MODEL ON THE TRIANGULAR LATTICE 

6.1. The Fully Occupied Lattice 

In order to investigate the universality of the trajectory scaling 
behavior found on the square lattice, we also studied the triangular lattice. 
Similar to the rotator and mirror models on the square lattice, either fixed 
rotators or fixed mirrors are randomly placed on the sites of the triangular 
lattice. The particle can move in six directions along the bonds of the lat- 
tice and its velocity is rotated by scatterers over an angle of __+ 2n/3 upon 
each collision} 3"7~ Since both the mirror model and the rotator model are 
discussed in this section, in order to avoid confusion, we define C,~ ~176 and 
C~. ~176 as the concentrations for right rotators and left rotators, respec- 
tively, while we define C~ i .... and C~) i .... as the concentrations for right 
mirrors and left mirrors, respectively. Similarly as before, C represents the 
total concentration of the scatterers. 

For C =  1 earlier papers have shown ~3"7~ that the mirror model and the 
rotator model can be mapped into each other by a global transformation 
which replaces all the right (left) mirrors on the trajectories by either 
right (left) rotators or left (right) rotators, respectively, provided 

rotator  __ mirror  C R O t a t o r =  C~a i  . . . .  and C L - C  c . Again it can be shown that the 
trajectories cannot cross themselves and that all right rotators are either on 
the outer side or the inner side of the trajectories, depending on the direc- 
tion in which the particle trajectory closes. 

Both the mirror model and the rotator model can now be mapped 
onto a site percolation rather than a bond percolation problem, as was the 
case for the rotator and the mirror models on the square lattice. For  site 
percolation on the triangular lattice the critical probability to occupy a lat- 

mirror tice site is 1/2, so that the critical point occurs for C~ i .... = CR = 
C~ota to r  = CsrOtator____ 1/2. Here we will only consider the rotator model, since 
the mirror model can be done in the same fashion. The number of right 
rotators NR and the number of left rotators NL contained in the closed 
trajectories exhibit the same power-law behavior as on the square lattice 
[cf. Eq. (4) and Fig. 3], 

< N n / N -  1/2) , .= < 1/2 - NL/N)r ~ N -0"57 (32) 

where N = NR + NL. 
For  the triangular lattice the maximum number of times a site on a 

trajectory can be visited by the moving particle is three. This can be shown 
by considering again the winding angle W. Upon each collision, W will 
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either increase or decrease by 2rt/3. Therefore, when the particle returns to 
the same site, ] W] will be a multiple of 2rc/3. However, there are only three 
allowed values for I wI on the triangular lattice of the form 2n~/3, where 
n can be 0, 1, or 2, so that the maximum number of times a site can be 
visited by the moving particle is indeed three. Accordingly, we define N~, 
N_,, and N3 as the number of sites visited by the particle once, twice and 
three times, respectively, while S is the length of the trajectory. These quan- 
tities satisfy the following two sum rules: 

Ni + N2 + N3 = N (33) 

N~ + 2N 2 + 3N 3 = S (34) 

The scaling behavior of Nt/N,  N2/N, and N3/N is similar to that found on 
the square lattice [Eq. (7) and Fig. 4], 

( N , / N - K , )  ~ ( K 2 - N 2 / N  ) ~ ( K 3 - N 3 / N )  ~ N  -~ (35) 

where K~ =0.3197, K2 =0.4052, K3 =0.2751. The sum ofK~, K 2, and K 3 is 
one, as required by Eq. (33). Although all values of K~ ( i =  1, 2, 3) are close 
to 1/3, they are not equal. The asymptotic scaling behavior for SIN follows 
from Eqs. (34) and (35) to be 

( S / N -  1.9554) ~ N -0 '57  (36) 

6.2. The Partially Occupied Lattice 

For the partially occupied lattice, i.e., C < 1, the rotator model and the 
mirror model can still be mapped into each other by a global transforma- 
tion. However, neither of the two models can be mapped onto a percola- 
tion problem, because the trajectories can cross themselves via empty sites. 
Nevertheless it was found numerically by Cohen and Wang 171 that for 
C <  1 there exists a linear critical line CR = C, = C/2, and the trajectory 
length distribution exponent r = 15/7 and the fractal dimension d r =  7/4 of 
the trajectories along this critical line belong to the same universality class 
as that of site percolation. However, the existence of this single critical line 
at low concentrations could not be established for concentrations below 
CR = CI_ = C/2 = 0.225, due to the prohibitively long numerical calculations 
needed. 

Since the trajectories can cross themselves, the winding angle W for 
closed trajectories is no longer restricted to 2re or -2zr, so that it is natural 

82Z 87/I-2-13 
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to study the scaling behavior of W. Our numerical results for Ctr = CL = 
C/2 = 0.45 show the relation 

<IW(N)/NI > ~ N-0.5o (37) 

in contrast to the stretched exponential behavior for the rotator model on 
the partially occupied square lattice, Eq. (9). 

For NR, NL, and N r  our numerical simulations yield [cf. Eq. (10) and 
Fig. 6] 

( I N R / N - C R I ) ~ ( I N L / N - C c I ) ~ ( I N I . : / N - C E I )  ~ N  -~176 (38) 

the same as that of the partially occupied square lattice. The exponent 0.50 
can be understood in the same way as for the mirror model for C = 1. 

Using the same kind of argument as we used above for the fully 
occupied lattice, we can show that the maximum number a site on a trajec- 
tory can be visited by the moving particle is three. Unlike for the rotator 
model on the partially occupied square lattice [cf. Eq. (13)] we find that 
N~/N, N2/N, and N3/N now follow the same scaling behavior along the 
critical line as the rotator model on the fully occupied square lattice [cf. 
Eq. (7)],  

( N , / N - - K , )  , . ~ ( K 2 - N z / N  ) ~ ( K 3 - N . ~ / N  ) ~ N  -'',Sv (39) 

where K~, K2, K 3 are functions of the concentration, which sum to 1, while 
the exponent -0 .57  is independent of the concentration. Our numerical 
simulations also show that K~ is not a monotonic function of C, while K2 
is an increasing function of C and K 3 is a decreasing function of C. 
However, all K i (i = 1, 2, 3) appear to converge to three different constants 
as C decreases. ~5~ 

7. CRITICAL REGION OF THE ROTATOR A N D  THE 
M I R R O R  MODEL ON THE T R I A N G U L A R  LATTICE 

7.1. The Fully Occupied Latt ice 

Since the rotator model and mirror model are equivalent on the tri- 
angular lattice, we only study the rotator model. The procedure is similar 
as for the square lattice (cf. Section 4). 

Our numrical calculations of the scaling function f ( x )  were carried 
out at CR = 0.47, 0.48, and 0.49, respectively. The scaling functions for 
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these three concentrations collapsed onto a single curve, which could be 
fitted again to a double Gaussian [cf. Eq. (23)], 

f ( x  ) = 0.94e - 1.80(.,- + (i.96)2 -I- 0.94e - 1.801 .,- - 0.96 )2 ( 4 0 )  

where for each CR more than 60 points were computed and the curve com- 
prises therefore more than 180 points. Equations (23) and (40) only differ 
in the constants occurring in the equations. When x >> 1, f ( x ) ~  e - Z ,  so 
ns~e  -s''7, the same as for the square lattice. 

The calculation of the scaling function h(x) is also similar to that for 
the square lattice. We again found numerically that f (x)h(x)  is propor-  
tional to f ( x )  [cf. Eq. (26)],  

f (x)  h(x) = 0.28e-1'80(" + 0 '96)2 "]- 0.28e-180(x -- 0"9612 (41) 

so that h(x) is a constant, 0.28/0.94 = 0.30. 
The average trajectory size diverges as one approaches criticality with 

an exponent ),, ( S ) ~  (CR-CR,) -~'. Our numrical simulations show that 
y =  2.0-t-0.01, in good agreement with the exact result, y = 2. The mean 
square displacement of the particle trajectories diverges with an exponent 
p, (RZ)~(Cn--CR)-~';  the value of p obtained from our numerical 
simulations is 2.33 +_0.01, also in good agreement with the exact result 
~,= 7/3 (of. Figs. 12 and 13). 

Using the histogram method, we computed the scaling functions also 
from the standard data obtained at the concentration CR--0.51 for the 
other concentrations CR = 0.52, 0.53, 0.54, 0.55. All the scaling functions 
f (x)  fall then on the same curve given by Eq. (40), showing that this 
method is consistent with the first one. 

7.2 The  Par t i a l l y  Occup ied  La t t ice  

For C < 1 the rotator  model and the mirror model can be still mapped 
onto each other. However, neither model can be mapped onto a percola- 
tion problem now, Here we only consider the rotator  model. It was found 
before that there is only one critical line CR = CL with critical exponents 
r =  15/7 and ds=7 /4 ,  the same as those at the critical point, C R =  
C/_,. = 1/2J 3"7) 

To study the critical behavior near criticality, we first need to choose the 
direction in which we approach criticality. The most obvious choice is the 
direction perpendicular to the critical line. Although the rotator  model can- 
not be mapped onto a percolation problem, we found nevertheless that if we 
choose a = 3/7, the scaling functions computed at different CR collapse very 
well onto a single curve. This suggests that randomly distributed empty sites 
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on the lattice are irrelevant for the critical behavior. The scaling functions 
were computed in the critical region near CR,. = CL,. = 0.425 at three dif- 
ferent CR, Cn=Cn,.+O.O1, CR=Cn,.+O.O15, and CR=CR,+0.02 ,  along 
the line C =  0.85. We found that these scaling functions could be fitted to 
a double Gaussian [cf. Eq. (23) and Fig. 10], 

f(x) = 1.05e-t.tsl.,-+ Hg)-' + 1.05e- HsI_,.-HgI-' (42) 

where we computed 80 points for each Cn, leading to 240 points on the 
curve. 

The product of f(x)h(x) is again found to be proportional to f(x) 
[cf. Eq. (6) and Fig. 11 ], 

f(x) h(x) = 0.30e-t.i 81.,- + J.19~'- + 0.30e - H  81.,-- Hg)-' (43) 

so that h(x)=0.30/1.05=0.28. It5~ Comparing Eqs. (40) and (43), respec- 
tively, one can see that all three constants contained in f(x) and h(x) are 
concentration dependent. 

To investigate whether the critical exponent a has the same value 
along the critical line, we also computed ( S )  and (R- ' )  in the critical 
region around CR,. = Ct_, = 0.45 and CR, = CL,. = 0.4, respectively. In both 
cases we found from our numerical simulations that the exponents 
y = 2 . 0 0 + 0 . 0 2  and p = 2 . 3 3 + 0 . 0 2  are very close to their values at 
CR,. = CL.. = 0.5:2 and 7/3, respectively, suggesting that the critical behavior 
along the critical line C R = Cz. belongs indeed to the same universality class 
(cf. Section 4). 

8. CONCLUSION 

In this paper we have given a more detailed numerical analysis than 
before of the nature of the trajectories generated in a Lorentz lattice gas 
cellular automaton on both the square lattice and the triangular lattice at 
and near criticality. 

Our study has shown that the "structural" properties of these trajec- 
tories are highly nontrivial and yield especially some new scaling behavior 
related to the scaling function exponent a, in addition to that associated 
with the critical exponents r and d: found before. The results are sum- 
marized in Tables I-IV. 

Our study raises many questions, among which we note the following. 

1. It is unclear why the critical exponents associated with percolation 
clusters also have significance for the dynamics of particle trajectories on a 
partially occupied lattice, where no mapping exists between the two. 
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Table I. Critical Behavior for C =  1 
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Square lattice Triangular lattice 

Rotator Mirror Rotator = Mirror 

( N I t ~ N -  1 / 2 ) ~  
= ( N L / N -  1 / 2 )  ~,: ~ N - ~  

( N , / N -  I / 2 >  
= ( I / 2  - N z / N >  ~ N -. .sT 

( S I N  - 3 / 2 )  - N -057 

( I M R / N -  CRI) 
= ( I M c / N -  Col ) ~ N - I t s~  

( N I / N - a ( C R ) >  
= ( b ( C R )  - N 2 / N )  = N -~ 

( S / N -  I - b (  C n ) )  ~ N -0"57 

( N R / N -  l / 2 ) c  

= ( N L / N -  I /2>r  
N - ~  

( N , / N - 0 . 3 1 9 7 )  
( 0 . 4 0 5 2  - N 2 / N  ) 

( 0 . 2751  - N 3 / N  ) 
g -o57 

( S / N -  1 .9554)  
g -o.57 

2. For C =  1, why are the asymptotic values of N R and Nc as well as 
of N~ and N~ on the fully occupied square lattice equal to N/2? Why, for 
the fully occupied triangular lattice, are NR and NL also equal to N/2, 
while N~, N 2, and N 3 approach different asymptotic values K t, K2, and 
K3, respectively? 

3. Although we have given an argument why the exponents describ- 
ing the fluctuations of NR/N along the critical line C = 1 for the mirror 

Tablel l .  Critical Behavior for C = 0 . 9  

Square lattice Triangular lattice 

Rotator Mirror Rotator = Mirror 

( I W / N - ( C ~ - C D [ )  ~ 2  - - ' s x  .... s u p e r d i f f u s i o n  ( ] W / N I )  ~ N -~176 

[ r =  I. d2 = 2)  

( I N R / N -  C R I )  

= ( I N L / N -  CLI) 
( [ N ~ / N -  CE]) ~ N -~ 

( N , / N - 0 . 2 6 7 1 )  
( N 2 / N  - 0 . 3 0 4 7 )  

( 0 . 2 2 2 3  - N.~/N)  

( 0 . 2 0 5 9  - N 4 / N  ) ~ N -~1"3'~ 

( I N ~ / N -  C~I )  

= ( I N L / N  - Ct.I ) 
( [ N t ; / N  - C r[ ) ~ N -~ 

( N t / N  - 0.3308 ) 

( 0 . 3 6 6 9  - N f f N )  
( 0 . 3 0 2 3  - N 3 / N )  ~ N -~ 

( S / N  - 2 . 3 6 7 0 )  ~ N -~ ( S I N  - 1 .9715)  ~ N - ~  
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Tablel l l .  Critical Behavior for C = 0 . 8  

S q u a r e  l a t t i ce  T r i a n g u l a r  l a t t i ce  

R o t a t o r  M i r r o r  R o t a t o r  = M i r r o r  

( ] W/N - ( CR -- CL)[ ) ~ 2 - l'4"s~ .... s u p e r d i f f u s i o n  ( ] W/N[ ) ~ N-~176 

( r  = 1, d t = 2)  

( INn~N-  Cnl) 
= ( I N ~ . / N -  CLI> 

([NI . : /N-  C t;l ) ~ N -l)s(' 

( N I / N -  0 . 2 6 8 0 )  

( N2 /N-0 .2760)  
( 0 . 2 3 6 5  - N.~/N) 
( 0 . 2 1 9 5  - Na/N ) ~ N -~176 

( SIN - 2.4075 ) ~ N - ~ 1 7 6  

( I N n ~ N -  Cnl) 
= ( ] N L / N - - C L I )  

( [ N E / N -  C t.:] ) ~ N - ~'5t~ 

( N~/N-0 .3356)  

40.3391 - N~JN) 
( 0 . 3 2 5 4  - N3/N ) ~ N -~ 

( S / N -  1 .990)  ~ N -0'57 

model are all equal to 0.50, the more fundamental exponent 0.57 remains 
elusive. We conjecture that the exact value is 1 - a  = 4/7, but it is not clear 
how to obtain this from theory. 

4. We find that the Ni/N approach their asymptotic values K; with a 
power law N -~ in all cases, except for the rotator model on the partially 
occupied square lattice, where the exponent has a significantly different 
value, 0.39. We also found that a appears to have the same value 3/7 in all 
cases, except again for the rotator model on the partially occupied square 
lattice, where we found a value a' = 1.6 _+ 0.3. Thus the scaling behavior of 
the Ni/N and the exponent a appear to be related to each other, but it is 
unclear in what way. 

5. Why does the winding angle W of the rotator model on the par- 
tially occupied square lattice exhibit a stretched-exponential-law behavior, 
while it exhibits a simple power-law behavior on the partially occupied tri- 
angular lattice? 

6. For the rotator model on the partially occupied square lattice the 
new scaling function f'(x), corresponding to the exponent o ' =  1.6_ 0.3, 
appears to be an exponential function, not the double Gaussian as for 
C =  1; the origin of this exceptional critical behavior is unclear to us. 
However, for the partially occupied triangular lattice we found a scaling 
function f(x) still described by a double Gaussian and a a very close to 
3/7, which also obtains for C = 1. This suggests that for this lattice the 
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Table IV. Scaling Functions and Critical Exponents" 

Lattice 

Square Triangular 

C = I  C < l  C = I  C < I  

Scaling functions 
, f (x)  (double Gaussian ) 

h(x)  ( cons tan t  ) 
f ' ( x )  (exponential) 

h ' (x)  ( cons tan t  ) 

Ai 

A', 

a'l 

1.03 - -  0.94 1.05 
2.25 - -  1.80 1.18 
0.86 - -  0.96 I. 19 

( C = 0 . 8 5 )  
0.38 0.30 0.28 

0.475 
1.65 • 10 - s  

0 
0.24 

Exponents 
r 15/7 15/7 15/7 15/7 
df 7/4 7/4 7/4 7/4 
a ( a '  } 3/7 1.6 3/7 3/7 
~,(~,') 2 0.54 2 2 
p(p '  ) 7/3 0.63 7/3 7/3 

"Scaling functions and critical exponents obtained for closed trajectories on the square and 
triangular lattices, f (x)=A sexp[-cq(x-al)  -~]+A I e x p [ - c ~ l ( x + a l )  2] and  f ' ( x ) =  
A't exp[  - a ~ ( x - a ~ ) ] .  The critical exponents for C =  1 are known exactly, those for C <  I 
only numerically. The square lattice for C < I  behaves exceptionally if the critical point 
Cn, = Co, = I/2 is approached along the line C R =  C L rather than along the line C =  1; the 
primed quantities refer to this case. 

critical behavior in the direction perpendicular to the critical line CR = CL 
is in one univerality class. 

7. The scaling function h(x) appears to behave like a constant in all 
cases, indicating that there are no noticeable corrections to the universal 
fractal dimension df = 7/4. This simply means that the gyration radius of the 
extended trajectories is independent of the degree of occupation of the lat- 
tice by scatterers and only trivially dependent on the nature of the lattice. 

8. We" have studied the scaling behavior of extended particle trajec- 
tories as their sizes approach infinity at criticality. For example, we have 
obtained for the rotator model on the fully occupied square lattice that 
( S / N - 3 / 2 ) ~ N  -~ where the exponent is very close to l - a =  
4/7=0.571,  with a characterizing the trajectory size distribution in the 
critical region neat" criticality. 
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We surmise that this may not be a coincidence and conjecture that there 
is a possible relation between the scaling behavior of extended closed trajec- 
tories a t  criticality and in the critical region n e a r  criticality. If so, the question 
arises whether also other exponents such as 7 and p could be determined from 
the scaling behavior at criticality, rather than, as we have done here, in the 
critical region. This behavior is also reminiscent of, although quite different 
from, the fluctuation-dissipation theorem, for here it concerns a connection 
between the behavior of a system at and near a critical point in equilibrium, 
rather than the behavior of a system at and near equilibriumJ-~5) 
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